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Persistence of SARS-CoV-2 on surfaces and relevance to 
the food industry 
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Determining the prevalence and persistence of viruses outside 
the human host aids our ability to characterize exposure risk 
across multiple transmission pathways. Since 2020, the 
Coronavirus Disease 2019 pandemic has resulted in a surge of 
research regarding severe acute respiratory syndrome- 
coronavirus-type 2 (SARS-CoV-2) and its potential to spread via 
direct and indirect contact transmission routes. Here, the 
authors discuss the current state of the science concerning 
SARS-CoV-2 transmission via contaminated surfaces and its 
persistence on environmental surfaces. This review aims to 
provide the reader with an overview of the currently published 
SARS-CoV-2 persistence studies, factors impacting 
persistence, guidelines for performing persistence studies, 
limitation of current data, and future directions for assessing 
SARS-CoV-2 persistence on fomites. 
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Introduction 
When severe acute respiratory syndrome (SARS) cor-
onavirus (CoV) type 2 (SARS-CoV-2) was identified as 
the causal agent of COVID-19 (Coronavirus Disease 
2019) in early January 2020 [1], knowledge regarding the 
transmission of this novel CoV and its potential impact 
on the food industry was limited. In the early months of 
the COVID-19 pandemic, the primary focus was placed 
on advancing research related to the clinical aspects (i.e. 
diagnosis and treatment) of SARS-CoV-2. Thus, initial 
communications to the public regarding exposure risks 
relied extensively on the epidemiology of previously 
identified highly pathogenic CoVs including SARS-CoV 

type 1 [2] and Middle East respiratory syndrome 
(MERS-CoV) [3]. However, specific characterization of 
SARS-CoV-2 transmission pathways, including indirect 
contact via contaminated surfaces, and factors impacting 
exposure risk became crucial as the world reluctantly 
stepped into an unprecedented public health emer-
gency. 

Briefly, SARS-CoV-2 is an enveloped, positive-sense, 
single-stranded RNA virus within the genus 
Betacoronavirus of the family Coronaviridae [1]. The Be-
tacoronavirus genus includes other highly pathogenic 
CoVs (i.e. SARS-CoV-1 and MERS-CoV). Replication of 
SARS-CoV-2 in both the respiratory and gastrointestinal 
tracts aligns with previous findings for SARS-CoV-1 [4]. 
Although SARS-CoV-2 manifests clinically as pneu-
monia in the lower respiratory tract of humans with some 
distinction across variants, significant and persistent viral 
loads are also detected in the upper respiratory tract and 
in stool samples of COVID-19 cases [5]. Characterization 
of both the concentration and route (i.e. fecal, re-
spiratory) of viral shedding is of particular importance 
when investigating transmission pathways. More speci-
fically, numerous environmental factors can influence ex 
vivo persistence of enveloped, respiratory viruses, such 
as SARS-CoV-2, on surfaces [6,7] which is the focus of 
the current review. 

In this review, the authors discuss the current state of 
science regarding SARS-CoV-2 transmission via con-
taminated surfaces and persistence on environmental 
surfaces. In addition, the challenges and limitations of 
SARS-CoV-2 persistence research are discussed. Lastly, 
it is the opinion of the authors that guidelines (i.e. 
minimum information required) should be established 
for publication of virus persistence data for interpreta-
tion across studies and to facilitate the translation of 
research into practice. Overall, this review aims to pro-
vide the reader with an overview of the currently pub-
lished persistence studies on SARS-CoV-2, the factors 
impacting persistence, guidelines for performing persis-
tence studies, limitations of current data, and future di-
rections for assessing SARS-CoV-2 persistence on 
fomites. 

Severe acute respiratory syndrome- 
coronavirus-type 2 transmission pathways 
The primary route of transmission for SARS-CoV-2 is via 
respiratory droplets (>  100 µm particles) and, to a lesser 
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extent, aerosols (< 100 µm particles) which are produced 
by coughing, sneezing, talking, and breathing [8,9]. 
Analysis of SARS-CoV-2 outbreak events has indicated a 
combination of both droplet and airborne transmission 
which is largely dependent on the specific setting (i.e. 
ventilation, ambient temperature, air flow) [10]. When 
considering infectious disease transmission via surfaces, 
respiratory droplets—as opposed to aerosols—are of 
concern since these larger expelled particles (i.e. a 
mixture of mucus, saliva, epithelial and immune cells, 
and, in this scenario, infectious virus) can deposit on 
proximal surfaces relatively quickly. This potential for 
particle deposition underscores the importance of char-
acterizing the persistence of SARS-CoV-2 on surfaces, as 
subsequent transfer from contaminated hands to the 
mouth or mucosal membranes can result in infection. 

While the significance of indirect contact transmission of 
SARS-CoV-2 via contaminated fomites is posited to be 
relatively minor, the ability to obtain direct evidence of 
any single transmission pathway is nearly impossible. 
Even still, numerous researchers have attempted to 
characterize or estimate the risk of SARS-CoV-2 trans-
mission via fomites. Onakpoya et al. [11] conducted a 
systematic review to ascertain the role of fomites in 
SARS-CoV-2 transmission. After reviewing 63 primary 
studies along with one systematic review, the authors 
concluded that SARS-CoV-2 RNA can be frequently 
detected on fomites, yet no positive culture results were 
observed in studies that tested for virus infectivity. 
While the overall quality of the studies was low to 
moderate due to several factors including lack of de-
scriptive methodology, appropriate analysis/reporting, 
and control of bias, these results suggest that RNA is 
more stable than infective SARS-CoV-2 virus [11]. Ad-
ditionally, quantitative microbial risk assessments have 
been performed to model transmission risks [12,13], 
which further supports the notion of a low risk of SARS- 
CoV-2 transmission via fomites. 

Severe acute respiratory syndrome- 
coronavirus-type 2 persistence on fomites 
The persistence of SARS-CoV-2 on fomites has been 
observed for extended time periods (up to 21 days) 
across several research groups (Table 1). These studies 
were performed with an initial inoculum titer (on the 
surface) ranging from approximately 3 to 6 log TCID50 
or PFU. Unfortunately, previous studies may not accu-
rately represent the actual virus titer on a ‘real-world’ 
surface. Many studies inoculate high inoculum titers as a 
worst-case scenario that are likely orders of magnitude 
higher than observed in public settings thus resulting in 
an overestimation of survival times [34,35]. Additional 
research is needed to delineate the impact of inoculum 
level on inactivation kinetics of SARS-CoV-2 [36,37]. 
However, it should be noted that Paton et al. [29] did 

not observe differences in SARS-CoV-2 decay rates on 
stainless steel with low (8 x 103 PFU) versus high (8 x 
105 PFU) inoculum levels. However, Paton and co-
authors [29] did observe differences in virus survival 
based on surface type, with the longest survival on sur-
gical mask material and stainless steel, and the shortest 
survival on a polyester shirt and bank notes. In addition, 
these authors [29] also highlighted the importance of 
detecting viable virus and not RNA levels, as RNA copy 
number reduced by 1-log over 21 days yet viable virus 
was unrecoverable after approximately 5 days on sur-
faces. 

Liu et al. [28] observed prolonged survival (up to 7 days at 
room temperature) of SARS-CoV-2 on various surface 
types in contrast to previous studies with survival times of 
3–4 days at room temperature [16,24]. These differences 
prompted Liu and coauthors to recommend the estab-
lishment of technical specifications to steer research on 
emerging viruses [28]. The authors of the current review 
agree that research groups should include specific in-
formation when designing and publishing studies on 
SARS-CoV-2 persistence on fomites (Table 2). Adherence 
to this minimum information required for publication will 
facilitate comparisons among currently available and fu-
ture datasets. In addition, these guidelines will allow re-
search groups to make more informed comparisons across 
studies, which is essential based on the numerous factors 
involved in persistence studies such as inoculum pre-
paration/matrix, titer, recovery methods, temperature, re-
lative humidity, among others (Table 1). 

Temperature is an important factor in virus persistence. 
Typically, an increase in temperature results in a de-
crease in infectious virus. Numerous studies observed 
longer survival times for SARS-CoV-2 when assessing 
persistence at low versus high temperatures [18,22,27]. 
Conversely, Kratzel et al. [19] observed similar survival 
rates at 4 ºC and room temperature as well as greater 
survival at 30ºC. Notably, Kratzel et al. [19] investigated 
SARS-CoV-2 persistence with 0.3% bovine serum al-
bumin (BSA) in the inoculum matrix. However, this 
does not explain the differences observed across tem-
peratures as Riddell et al. [22] utilized a tripartite solu-
tion as an inoculum matrix, which also contains BSA 
along with mucin and tryptone. Riddell et al. [22] and 
Kratzel et al. [19] observed similar SARS-CoV-2 half- 
lives of 10.7–32.7 h and 17.9 h at 30ºC, respectively. 
However, at room temperature, 40.3–65.8 h half-lives 
were observed by Riddell et al. [22] in tripartite solution 
and a half-life of 9.1 h in 0.3% BSA by Kratzel et al. [19]. 
Although differences in relative humidity (Riddell et al.  
[22]: 50%, Kratzel et al. [19]: 30–40%) may have con-
tributed to the differences in half-lives observed be-
tween the two studies, these results highlight the 
complexity and variability within persistence studies 
across research groups. 
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When considering the surface type (e.g. plastic, stainless 
steel, etc.), there seem to be no major differences in 
SARS-CoV-2 survival among different types of non-
porous surfaces [15]. However, when comparing non-
porous surfaces with porous surfaces (e.g. vinyl, cotton, 
paper, polyester, etc.), much shorter SARS-CoV-2 sur-
vival times are observed on porous surfaces  
[16,29,30,38]. Chatterjee et al. [39] highlighted the im-
portance of surface wettability and the impact on thin- 
film evaporation and subsequent virus survival. Once the 
initial evaporation of a bulk droplet occurs on a surface, 
the evaporation of the remaining residual thin film is 
driven by disjoining pressure within the film. Thus, the 
wettability and overall surface topography can impact 
survival based on the integrity of the thin film [40]. 
Identifying which factors impact surface wettability, 
such as frequency of use and the presence of organic 
matter residues following cleaning, may help predict the 
variability in persistence on different surfaces. 

Surface inoculation procedures can also impact the ob-
served survival of SARS-CoV-2. For instance, virus in-
fectivity is greatly reduced during the initial drying 
process [19], after which the dried inoculum can survive 
and result in transfer. Biryukov et al. [15] did not ob-
serve significant differences in half-lives impacted by 
inoculum volumes of 5, 10, or 50 μL. A majority of 
studies on SARS-CoV-2 persistence were evaluated with 
cell culture media (e.g. minimum essential medium) as 
the inoculum matrix; however, determining SARS-CoV- 
2 persistence within matrices that are more re-
presentative of real-world scenarios (i.e. respiratory se-
cretions, fecal shedding) is critical to the relevance of 
data to the food industry and beyond. For instance, Liu 
et al. [28] observed that SARS-CoV-2 can survive for 
several hours in feces and several days in urine; thus, 
identifying how the virus survives on surfaces with ac-
companying matrices in the environment should be an 
important consideration when designing future persis-
tence studies. In the context of transmission routes via 
fomites in food-related environments, simulated saliva 
and human nasal mucus and sputum are likely the most 
representative of the matrix accompanying infectious 
virus on fomites [15,20,23]. However, the ability of in-
fectious virus shedding via feces could also be of parti-
cular importance to understanding indirect contact 
transmission in food-related environments [5,41]. 

Lack of evidence for foodborne transmission 
Strategies such as handwashing and not working while ill 
are well known in the food industry for preventing in-
fectious disease transmission; however, time constraints 
and a lack of food safety culture can greatly impact how 
well these strategies are implemented, thus impacting 
the risk of pathogen transmission. Evidence supporting 
the foodborne transmission of SARS-CoV-2 is lacking  
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[42]. Current practices among food industry workers and 
management that target highly transmissible foodborne 
pathogens such as human norovirus [43] will lower the 
risk of SARS-CoV-2 transmission via food even further. 
The Food and Agriculture Organization of the United 
Nations has provided guidance for preventing COVID- 
19 transmission within food businesses and suggests 
establishments to adhere to all applicable food hygiene 
standards and other preventive measures currently in 
place [44]. 

Given that SARS-CoV-2 is a respiratory virus, it is critical 
to acknowledge that the greatest risk to the food in-
dustry is transmission among workers and not the con-
sumption of foods that may have been handled with 
SARS-CoV-2 contaminated hands or surfaces. The po-
tential for SARS-CoV-2 transmission among workers 
during meat processing has been documented [45], and 
fomites have been suspected of indirect transmission 
SARS-CoV-2 [46]. Liu et al. [47] also described the 
possibility of SARS-CoV-2 transmission via surface 
contamination of the outer packaging of imported frozen 
cod after two port personnel were determined to be 
positive for SARS-CoV-2. Chi et al. [48] further outlined 
instances of SARS-CoV-2 detection on cold chain food 
packaging though evidence of subsequent contact 
transmission was decidedly inconclusive. While the oc-
currence of SARS-CoV-2 on frozen food packaging is 
compelling, simulation models suggest that additional 
decontamination processes on food packaging materials 
for control of SARS-CoV-2 do not confer beneficial risk 
reduction for cold-chain food workers when combined 
with effective practices such as handwashing and mask- 
wearing [49]. Handwashing and mask-wearing were 
shown to reduce risk well below the risk threshold, thus 
decontaminated packaging was suggested to have 
minimal impact on risk reduction. While the COVID-19 
pandemic may impact food safety in the food industry 
due to supply chain disruptions, disruptions in food 
safety practices in food processing facilities, and 

disruptions in audits, the risk of SARS-CoV-2 transmis-
sion via food is negligible [50]. 

Jai et al. [51] observed infectious SARS-CoV-2 for up to 
21 days post inoculation (initial titer of 4 log PFU) on 
refrigerated deli foods, meats, and fresh produce, al-
though the risk of foods having a high enough virus 
concentration to result in transmission is unlikely. For-
tunately, most foods are treated using various processes 
(e.g. acidification, heat treatment, etc.) to greatly reduce 
the risks of biological hazards. For example, both acid-
ification and heat treatment have shown to impact the 
nucleocapsid of SARS-CoV-1 [52]. If food and/or its in-
gredients became contaminated with SARS-CoV-2, 
routinely applied food processing steps would greatly 
reduce the risk of transmission via food [53]. 

Challenges and limitations of severe acute respiratory 
syndrome-coronavirus-type 2 persistence studies and 
future directions 
Although further investigations are warranted, Hirose 
et al. [54] observed longer survival of the SARS-CoV-2 
Omicron variant on human skin surfaces in comparison 
with the Wuhan, Beta, Gamma, and Delta variants. The 
survival among SARS-CoV-2 variants of concern may be 
of interest in future persistence studies on porous and 
nonporous surfaces. The work by Hirose et al. [54] fur-
ther highlights the importance of not generalizing virus 
persistence on fomites as this is a long withstanding 
route of transmission, and not all viruses behave simi-
larly on environmental surfaces. These differences be-
tween variants may be due in part to structural changes 
of the viral capsid allowing for increased resistance to 
environmental stressors [4]. A study evaluating the per-
sistence of SARS-CoV-2 variants would be beneficial for 
characterizing how variant type impacts SARS-CoV-2 
persistence. Additionally, assuming that differences si-
milar to Hirose et al. [54] will be observed, further 
evaluation of the structural components of each variant 
and corresponding survival rates would greatly aid in the 

Table 2 

Critical, preferred, and beneficial information to provide for SARS-CoV-2 persistence studies with example references in brackets.     

Critical Preferred Beneficial  

Inoculum application (spread versus 
droplet) [29–31] 

Calculated half-life values Inoculum matrix characterization [15] 

Inoculum matrix [15,22,26] Continuous monitoring of temperature and relative 
humidity 

Inoculum temperature 

Inoculum titer [19,22,27,30] Limit of detection  
Inoculum volume Source and details of surface(s) [30]  
Relative humidity   
Recovery method (repeated pipetting, 
flooding) [22,29]   
Sampling time points   
Strain/isolate type   
Temperature     
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understanding of future variants or emerging virus per-
sistence on fomites. 

Optimizing real-world scenarios that include more re-
presentative surface conditions observed in public set-
tings should be investigated. For example, several 
studies utilized an artificial organic load matrix, that may 
differ from actual inoculum composition to a greater 
extent than realized in public settings. Additionally, 
grease, food residues, and other components on surfaces 
that are not removed before contacting the virus may 
need to be further characterized to fully understand 
virus interactions with surfaces in a more realistic en-
vironment. The microbiota present on fomites should 
not be ignored as these microorganisms likely interact 
with SARS-CoV-2 [55] which possibly impacts virus in-
activation kinetics. While these biological questions are 
of importance, researchers continuously balance time 
and resources during their efforts to address critical 
knowledge gaps. Preliminary studies for experimental 
design and optimization with SARS-CoV-2 are limited 
due to BSL-III facility requirements, as well as the time 
and troubleshooting that may be associated with con-
firming the absence of cytotoxic effects of the inoculum 
or surface matrices on host cell lines. 

Conclusion 
This review provides an overview of the current avail-
able data on SARS-CoV-2 persistence on fomites in the 
context of consumer-facing environments including 
food-related settings. Based on the current state of sci-
ence regarding SARS-CoV-2 transmission via con-
taminated surfaces and its persistence on environmental 
surfaces, there is a relatively low risk of fomite trans-
mission, and mitigation efforts for future emerging 
viruses should emphasize proper hygienic practices, 
physical distancing, and proper air ventilation in food- 
related environments. Nevertheless, some transmission 
via fomites likely occurs, although delineating transfer 
rates through validated studies is an extremely difficult 
task. Overall, future research on SARS-CoV-2 persis-
tence on fomites should address issues pertaining to the 
inoculum titer, matrix, and variants used in survival 
studies. Lastly, adhering to the guidelines on the 
minimum information required for publishing is re-
commended to guide future researchers and alleviate the 
difficulty of comparing persistence data across studies 
with contrasting variables. 
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